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Summary Electrolytically generated superoxide reacted with 5-halo-1,2,3-tnazines 1 to afford 5-
hydroxy-1,2,3-tnazines 2 Reaction of 1 with hydroxide anion or potassium superoxide resulted in
complicated mixture of products, therefore the reaction was specific for electrogenerated superoxide
The reaction mechanism was investigated with electrochemical methods, and it was revealed that one

electron transfer from superoxide to 1 imhiahzed the reaction

Monocyclic 4,6-disubstituted 1,2,3-triazines 31) have such high w-deficiency that they are easily
attacked with nucleophiles The reaction site was manly C-4,2) and succeeding ring opening occurred
fo form o,B-unsaturated B-aminoketone derivatives 3) Thus the direct introduction of substituents by
the nucleophilic substitution4) was unsuccessful for 3 Moreover, general method for the synthesis of
3 involved the oxidation of corresponding 1-ammopyrazoles,5) therefore 1t was impossible to
introduce previously the functional group which was labile under oxidative conditions In order to
prepare 1,2,3-triazines having functional groups, we synthesized 5-haio-1,2,3-tnazines 1,5) and
investigated the reactivity of 1 As a result, 1 was allowed to react with electrolytically generated
superoxide to give 5-hydroxy-1,2,3-triazine 2 7) In this paper, we report the detailed results of the
reaction and the reaction mechanism using electrochemical methods

Oxygen molecule i1s known to be reduced electrolytically ( -0 87V vs saturated calomel electrode
SCE) n aprotic solvent to form superoxide anion radical 8) When the reduction was carnied out In the
presence of 1 in CH3CN, substtution reaction proceeded to form 2 ( scheme 1 and Table 1)
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Table 1 Reaction of 5-Halo-1,2,3-tnazines 1 with Electrolytically Generated Superoxide

substrate R? R? X Ey2(V) react time yleld of 2 (%)
1a Me Me Br -1 48 10hr 95
1b Me Et Br -155 10hr 97
ic Et Et Br -1 56 10hr 66
1d Me Ph Br -127 10hr 74
1e Ph Ph c9 -126 40hr 25

First reduction potentials of all substrates 1 were considerably less than the appled potential, thus
only oxygen was supposed to be reduced electrolytically in these condiions No electric current was
observed on the reduction at -0 87V n the absence of oxygen (under argon atmosphere), and the
reduction at -1 4V under argon resulted in the formation of corresponding triazine (scheme 2) 10)

Br H
Mem/\r"’" CH3CN-E4NCIO~(PY) MQ\K\rPh yield 70%'")
- o
N.NéN -140V vs SCE under Ar N‘N"N
1d 3d
scheme 2

For the analysis of the reaction mechanism, the study using cyclic voltammetry was performed
Table 2 shows the reduction potentials of 1 and corresponding 1,2,3-tnazines 3 Halotriazine 1 had
two ireversible reduction waves, and the value of the second one was almost as same as that of 3 The
fact indicated that one electron reduction of 1 resulted in the formation of 3, which was performed by
halide release followed by hydrogen abstraction

Fig 1 shows the cyclic voltammogram of 5-bromo-4,6-dimethyl-1,2,3-tnazine 1a under argon
atmosphere It was observed that one electron reduction occurred irreversibly, and the oxidation wave
of bromide anion appeared on the reverse positive-going sweep 12) Ths phenomenon also suggested
that one electron reduction of 1a caused the elimination of bromide anion, even in the absence of

superoxide or oxygen
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Table 2 Redox Potentials of Halotriazines 1 and Tnazines 3 in CH3CN/E14NCIO4

Rl R2 R3 E1/2(V)SCE

1a Me Me Br -1 48 -1 93

3a Me Me H -1 95

1b Me Et Br -1 55 -1 98

3b Me Et H -1 96 R?

NN

I

1¢ Et Et Br -1 56 -2 01 N,NéN

3c Et Et H -2 03
ior3

1d Me Ph Br -1 27 -1 80

3d Me Ph H -1 82

1e Ph Ph cl -1 26 -1 68

3e Ph Ph H -1 64

Fig 2 affords the cyclic voltammograms of oxygen in the absence or in the presence of 1a It was shown
that the increasing concentration of 1a caused the cathodic peak current of O2 and the anodic peak
current of Br- to increase, and also caused the anodic peak current of superoxide to decrease Thus it
was revealed that the electrogenerated superoxide reacted with 1a, and bromide anion was released in
the same way as the one electron reduction of 1a Thus superoxide was suggested to act as one electron
reductant

The above results indicated us the reaction mechanism as shown in scheme 2 At first, halotnazine
1 was reduced by superoxide to form anion radical 4 The release of halide anion from 4 was occurred
spontaneously to afford a radical 5, which was supposed to abstract hydrogen atom from the solvent to
produce triazine 3 in the absence of oxygen The presence of oxygen caused the formation of a peroxy
radical 6, which led to hydroxytriazine 2 There are few reports that presented the aromatic
substitution with superoxide 13:14)  Fnmer et al proposed that one electron transfer from superoxide
followed by addition of molecular oxygen took place in the case of halonitrobenzenes as substrates 13)
The reaction mechanism shown in scheme 2 is similar to the case, except that the nucleophilic addition
of oxygen occurred after halide elimination 15)

A specific feature of our reaction system was that potassium superoxide was not avaiable for the
substitution Reactions with K02/18-crown-616) instead of electrogenerated superoxide resulted in

the complicated mixture of products, part of which were derived from ring-opening reaction, and the
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Fig. 1 Cyclic voltammogram for 1a under argon atmosphere in acetonitrile
(0 1M tetrasthylammoniwum perchiorate ) at mercury electrode
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Fig. 2 Cyclic voltammogram for molecular oxygen in the absence and presence
of 1a in acetonitrile( 0 1 M tetraethylammonium perchlorate ) at mercury electrode
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reaction rate was much slower The result was almost the same as in the case of KOH as a reagent, which
means that KO2 was not an effective reductant for 1 The slight solubility and low reduction ability!7)

of potassium superoxide might cause the slow reaction rate, and the trace amount of hydroxide
anion18) in the reaction medium would attack C-4 position of triazine to bning about the ring
opening 19)
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scheme 3

In this paper we described the novel aromatic substitution with electrogenerated superoxide The
method may be useful for the substitution of the compounds which are labile under basic condition.
Hydroxytriazines thus obtained are of interest from the viewpoint of aromatcity and tautomensm 20)
The physical properties of them are the subjects of continuing studies

EXPERIMENTAL

All melting points were taken on a Yanaco micro melting point apparatus and are uncorrected The
mass spectra were measured with a JEOL JMS-D300 instrument The nuclear magnetic resonance
spectra were taken on JEOL JNM-FX100 and GX400 spectrometers using tetramethyisilane as an

internal standard

General Procedure for the Preparation of S5-Halo-1,2,3-trlazines Compounds 1a, 1d,
and 1e were already reported 6b) The other substrates 1b and 1¢ were synthesized by the oxidation of
corresponding 1-aminopyrazoles with N-bromosuccinimide { NBS ) 1-Aminopyrazoles were obtained
from the N-amination of corresponding pyrazoles with hydroxylamine O-sulfonic acid in EtOH at 65°C
A methylene chlornde solution of 1-aminopyrazole was treated with a solution of NBS ( 2 molar eq with
respect to the aminopyrazole ) at 0°C  After 2hrs' reaction, the reaction mixture was filtrated to

4321



4322 T ITOH et al

remove insoluble substance, and the filtrate was evaporated to leave the residue, which was
chromatographed on alumina ( hexane-CH2Cl2 ) to give 5-bromo-1,2,3-triazine
1-Amino-3-ethyl-5-methylpyrazole: Yellow oil, Mixture with 1-amino-5-ethyl-3-methyl-
pyrazole. 1H-NMR (CDCI3) of the major one, &: 120 (3H, t, J=7Hz), 2 24 (3H, s), 2.65 (2H, q,
J=7Hz), 566 (1H, s) 1H-NMR (CDCI3) of the minor one, § 124 (3H, t, Ju7Hz), 218 (3H, s),
262 (2H, q, J=7Hz), 580 (1H, s) Exact MS m/z (M*), Calcd for CgH1{N3: 125 095 Found
125 095

1-Amino-3,5-dlethylpyrazole: Yellow oil. 1H-NMR (CDCI3) 3 118 (6H, t, J=7Hz), 252
(2H, q, J=7Hz), 262 (2H, q, J=7Hz), 4 71 (2H, bs), 566 (1H, s). 13C-NMR (CDCl3)§ 129,
136, 185, 215, 1000, 1449, 1508 Exact MS m/z (M*), Calcd for C7H13N3 139.111. Found
139 113

5-Bromo-4-ethyl-6-methyl-1,2,3-triazine (1b): Colorless ol TH-NMR (CDCI3) 5 138
(3H, t, J=7Hz), 276 (3H, s), 308 (2H, q, J=7Hz) 13C-NMR (CDCI3) 5 116, 22.6, 289, 1264,
1601, 1633 Exact MS m/z (M+), Calcd for CgHgN3Br 200 990. Found 200 992
5-Bromo-4,6-diethyl-1,2,3-triazine (1c): Colorless ol 1H-NMR (CDCI3) & 140 (6H, t,
J=7Hz), 309 (4H, q, J=7Hz) 13C-NMR (CDCI3) 5 115, 300, 1259, 1634. Exact MS m/z
(M+), Caled for C7H1gN3Br 214 999 Found 215 002

General Procedure for the Reaction of 5-Halotriazines with Electrolytically Produced
Superoxide 5-Halotriazine ( 1mmol ) was dissolved in 40 ml of 01 M tetraethylammonium
perchlorate solution of acetonitnle and a stream of oxygen was bubbled into the solution through a gas
dispersion tube which was inserted into the cathode chamber of a H cell containing platinum electrode.
The electrolysis was carried out with Yanaco VE-9 potentio/galvanostatic electrolyzer and Nikko
Keisoku potentiogalvanostat NPGS-2501 The potential was set and maintained at -0 87 V vs SCE until
the staring matenial was entirely consumed In the case of 1e, the substrate was detected even after
4hr, though the other substrates were reacted within 1hr  After the electrolysis, the solvent was
evaporated and the residue was dissolved in ether to remove Iinsoluble supporting electrolyte The
residual solution was evaporated, and the residue was chromatographed on silica gel to give 5-hydroxy-
1,2,3-tnazine 2

5-Hydroxy-4,6-dimethyl-1,2,3-triazine (2a): Yield 95 % Colorless needles from hexane-
AcOEt, mp 206°C Elemental analysis was unsuccessful because of 2a's tigh subliminableness 1H.
NMR (CDCI3) 8 190 (1H, bs), 228 (6H, s) 13C-NMR (CDCi3) & 156, 1527, 16566 Exact MS
m/z (M+), Caled for CsH7N3O 125059 Found 125 059
4-Ethyl-5-hydroxy-6-methyl-1,2,3-triazine (2b)- Yield 97 % Coloriess granules from
CH30H, mp 181°C Anal Calcd for CgHgN30O C, 5178, H, 6 52, N, 30 20 Found C, 5209, H, 6 59,
N, 3000 TH-NMR (CDCl3) 5 120 (3H, t, J=7Hz), 224 (1H, bs), 229 (3H, s), 276 (2H, q,
J=7Hz) 13C-NMR (CDCI3) 5 101, 158, 224, 1533, 1566, 1652
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4,6-Diethyl-5-hydroxy-1,2,3-trlazine (2¢): Yield 66 %. Colorless granules from CH3OH;
mp 172°C Anal Calcd for C7H1{N30O, C, 54.88, H, 7.24, N, 2743 Found C, 5508, H, 7.35; N,
2724 1H-NMR (CDCi3g) 5 119 (6H, t, J=7Hz), 218 (1H, bs), 279 (4H, q, J=7Hz). 13C-NMR
(CDCI3) & 1017, 22.41, 1569, 1649

5-Hydroxy-4-methyl-6-phenyl-1,2,3-triazine (2d): Yield 74 % Colorless granules from
CH30H, mp 182°C Anal Calcd for C19HgN3O C, 64.16, H, 4 85, N, 2245 Found: C, 64 31, H, 4 84,
N, 2226 TH-NMR (CDCI3) & 217 (iH, bs), 241 (3H, s), 731-741 (3H,s), 8 12-825 (2H, s)
13C-NMR (CDCl3) 8 155, 1277, 1279, 1295, 1323, 1477, 156 4, 164 1
5-Hydroxy-4,6-diphenyl-1,2,3-triazine (2e): Yield 25 % Colorless granules from CH3OH,
mp 197°C  Anal Caled for Ci{sH1{N30O" C, 7227, H, 445, N, 16 86 Found: C, 71 98, H, 4 25, N,
1626 TH-NMR (CDCI3) 5 128 (1H, bs), 732-740 (6H, m), 810-820 (4H, m) 13C-NMR
(CDCl3) 8 1278, 1282, 1297, 1324, 1518, 1631 Exact MS m/z (M*), Caled for CisH11N30
249 090 Found 249 091

Cyclic voitammogram The substrate ( 01 mmol ) was dissolved in 10 mi of 01 M
tetraethylammonium perchlorate solution of CH3CN The redox potential and cyclic voltammogram were

measured with a Yanaco P-1100 polarographic analyzer For the measurement of redox potential, 3b

and 3c were newly synthesized according to the previously reported method 1a)
4-Ethyl-6-methyl-1,2,3-triazine (3b): Colorless oil TH-NMR (CDCi3) 5 138 (3H, t,
J=7Hz), 267 (3H, s), 295 (2H, q, J=7Hz), 707 (1H, s) 13C-NMR (CDCi3) 5 124, 217, 286,
1165, 159 4, 1637 Exact MS m/z (M*), Calcd for CgHgN3 123 080 Found 123 080
4,6-Diethyl-1,2,3-triazine (3c) Colorless of TH-NMR (CDCI3) 5 138 (6H, t, Ja7Hz),
285 (4H, q, J=7Hz), 704 (1H, s) 13C-NMR (CDCI3)5 124, 287, 1153, 1639 Exact MS m/z
(M*), Calcd for C7H{1{N3 137 095 Found 137 097
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